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Abstract

In this paper the in~uence of stationary magnetic _elds of arbitrary direction on three!dimensional natural convection
in liquid metals is investigated[ The liquid metal is con_ned in electrically insulating rectangular cavities[ The convection
is driven by horizontal or vertical temperature gradients[ A second!order _nite!di}erence method is employed to solve
the basic dimensionless equations[ Electric current paths and the e}ect of resulting Lorentz forces on the organisation
of ~ow and heat transport are studied[ Electric currents often close within the ~uid without short circuiting through
Hartmann layers[ Typical ~ow patterns show excessive intensities in regions close to corners[ Þ 0887 Elsevier Science
Ltd[ All rights reserved[

Nomenclature

a distance between hot and cold wall
B magnetic induction
B9 norm of the external magnetic _eld
g acceleration of gravity
h height of the cavity
j current density
k unit vector in direction of gravity
n unit vector normal to the wall
q heat ~ux density
Q convergence criteria
t time
T temperature
p pressure
v velocity
v9 buoyancy velocity
x\ y\ z non!dimensional coordinates[

Greek symbols
a wave number
b coe.cient of thermal expansion
DT characteristic temperature di}erence
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Dt timestep
Dx\ Dy\ Dz non!dimensional grid spacings
h dynamic viscosity
k thermal di}usivity
l thermal conductivity
lc wavelength of convection rolls
n kinematic viscosity
r density
s electric conductivity
F electric potential[

Non!dimensional parameters
Ha Hartmann number aB9zs:h
Nu Nusselt number\ qa:lDT
Pr Prandtl number\ n:k
Ra Rayleigh number\ `bDTa2:mk[

0[ Introduction

Magnetoconvection plays an important role in geo!
and astro!physics[ In the outer layers of the Sun and in
the Earth|s core we _nd a convective motion which is
capable of generating magnetic _elds[ Related phenom!
ena are investigated in the dynamo theories[ Recently\
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magnetoconvection became more and more relevant in
material processing facilities[ The control of crystal
growth with the help of external magnetic _elds seems to
be promising[ Therefore\ current research has intensi_ed
in the _eld of magnetoconvection and several new results
were presented in the last few years[ In this context we
refer to the publications of Alboussiere et al[ ð0Ł\ Davoust
et al[ ð1Ł\ Garandet et al[ ð2Ł\ Hadid and Henry ð3Ł and
Ma and Walker ð4Ł[ The fundamental nature of mag!
netoconvection depends on the ratio of magnetic and
thermal di}usivity[ In astrophysics this ratio is very small
whereas on laboratory scale this ratio becomes very large[
In our investigation we concentrate on situations where
this ratio becomes very large[ Furthermore\ we only con!
sider the in~uence of an externally imposed\ stationary
magnetic _eld on natural convection[ The in~uence of the
velocity _eld on the magnetic _eld is neglected\ induced
magnetic _elds are not taken into account[ More infor!
mation about magnetoconvection can be found in the
classical works of Chandrasekhar ð5Ł\ Gershuni and Zhu!
khovitskii ð6Ł and Proctor and Weiss ð7Ł[ In order to
study three!dimensional magnetoconvection numerical
calculations can be useful[ Therefore\ we solve the result!
ing basic dimensionless equations in Cartesian coor!
dinates numerically with a second order _nite!di}erence
method[

We present calculations for two di}erent geometries
and physical situations[ In a _rst step we investigate the
~ow in an electrically insulating cube which is heated and
cooled at two opposite side walls[ Walls which are neither
heated nor cooled are assumed to be adiabatic or per!
fectly heat conducting and the direction of the magnetic
_eld is arbitrary[ The Rayleigh number is _xed at
Ra � 095 and the Prandtl number is assumed as
Pr � 9[943[ There exist two publications of Ozoe and
Okada ð8\ 09Ł\ one presenting a numerical analysis and
one presenting experimental results\ which deal with mag!
netoconvection in the same geometry[ These inves!
tigations are limited to adiabatic walls and external mag!
netic _elds oriented parallel to the sides of the cube[ The
present work is aimed at analysing the closure patterns
of the electric currents and the resulting Lorentz forces
in order to explain the ~ow patterns for various thermal
boundary conditions and directions of the magnetic _eld[
This was not performed by Ozoe and Okada\ even not
for the directions of the magnetic _eld they considered[
The Nusselt numbers calculated by Ozoe and Okada are
compared to those obtained by our computations[

In a second step we investigate the ~ow in a rectangular
cavity with the aspect ratio 5 ] 2 ] 0[ The natural con!
vection is driven by a vertical temperature gradient and
the magnetic _eld is oriented vertically\ too[ Walls which
are neither heated nor cooled are assumed to be adiabatic[
We present calculations for Hartmann numbers Ha in
the range 9 ¾ Ha ¾ 59 for Rayleigh number Ra ¾ 4 = 093

and for the Prandtl number Pr � 9[94[

1[ Basic dimensionless equations

Neglecting displacement currents\ induced magnetic
_elds\ dissipation and Joule heating and using the Bous!
sinesq approximation we obtain the following system of
nonlinear\ partial di}erential equations describing mag!
netoconvective ~ows[ These are the continuity equation\
the momentum equations\ Ohms law\ the conservation
of electric charge and the energy equation]
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Using the nondimensionalisation explained in Mo�)ner
ð00Ł we _nd the following set of nondimensional equa!
tions]
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In these equations the time t\ the pressure p\ the density
r\ the electric current density j\ the magnetic _eld B and
the electric potential F are made dimensionless with the
reference scales a:v9\ asv9B

1
9\ asB1

9:v9\ sv9B9\ B9 and
av9B9[ The velocity v is scaled by the buoyancy velocity
v9 � z`bDTa and the temperature T is related to the
typical temperature di}erence DT of the problem[ As
typical temperature di}erence the temperature di}erence
between the heated and cooled wall is chosen[ The unit
vector in direction of gravity is characterized by k[ The
variable a denotes the distance between the heated and
the cooled wall of the cavity\ s the electric conductivity\
B9 the norm of the external magnetic _eld\ ` the accel!
eration of gravity and b the coe.cient of thermal expan!
sion[ Within the set of dimensionless equations we _nd
three!dimensionless parameters\ the Hartmann number
Ha\ the Rayleigh number Ra and the Prandtl number Pr[
They are de_ned as]

Ha � aB9X
s

h
\ Ra �

bDT`a2

nk
\ Pr �

n

k
[ "00#

The Hartmann number Ha represents the square root of
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the ratio of electrodynamic to viscous forces[ The mean!
ing of the variables a\ B9 and s has already been explained
in the previous paragraph and h represents the dynamic
viscosity of the ~uid[ The Rayleigh number Ra represents
the ratio of buoyant energy release to viscous and thermal
energy dissipation[ In this context n denotes the kinematic
viscosity and k the thermal di}usivity[ The Prandtl num!
ber is commonly explained as the ratio of the time scales
for di}usion of momentum and heat[

Additionally we introduce the Nusselt number Nu
which is de_ned as

Nu �
qa

lDT
[ "01#

The Nusselt number is the ratio of entire heat transport
to heat transport by heat conduction[ The variable q
denotes the heat ~ux density\ DT the characteristic tem!
perature gradient and l the thermal conductivity[

In order to solve the dimensionless equations the fol!
lowing boundary conditions are used[ The boundary con!
dition for the velocity is the no slip condition

v=wall � 9[ "02#

For temperature we employ the boundary conditions

T=wall � f and
1T
1n bwall

� 9[ "03#

The _rst condition is used for heated\ cooled and perfectly
heat conducting walls where f denotes a space dependent
function[ The second condition is used for adiabatic walls
where n denotes the direction normal to the wall[

The boundary condition for the pressure results
according to Peyret and Taylor ð01Ł to

1p
1n bwall

� 9[ "04#

Because of the electrically insulating walls we have the
homogeneous Neumann boundary condition

1F
1n bwall

� 9 "05#

for the electric potential[
In the case of electrically insulating walls the normal

component of the electric current vanishes at the wall[
The boundary condition for the electric current results to

j = n=wall � 9[ "06#

2[ Numerical methods

To solve the system of dimensionless equation a _nite!
di}erence method in conservation form is used[ The cal!
culations are carried out on an equidistant\ rectilinear
and rectangular grid[ Moreover\ a staggered grid is pre!
ferred[ This means that the scalar quantities such as tem!
perature\ pressure and the electric potential and the vec!

tor components of velocity\ electric current density and
magnetic _eld are located at di}erent positions[ While
the scalars are located in the centre of a computational
cell the vector components are located at the boundary
of a cell[ The use of such a grid prevents unphysical
oscillations of the computed pressure as it is possible for
regular grids[

In typical calculations in the geometry of the cube
39×39×39 grids up to 53×53×53 grids are used[ A
39×39×39 grid results in a equidistant dimensionless
gridspacing of Dx � Dy � Dz � 9[914[ For 53×53×53
grids one obtains Dx � Dy � Dz � 9[904514[ The com!
putations are repeated using a 017×39×39 grid[ The
maximum number of points "�017# is always used in the
direction of the magnetic _eld[ If there are two non!zero
components of the magnetic _eld\ 017 points are used in
each of those directions\ whereas the number of grid!
points in direction of the zero component of the magnetic
_eld is reduced to 14[ If all components of magnetic
_eld are non!zero\ the calculations are repeated with an
79×79×79 grid[ The numerical solutions show for all
grids the same qualitative behaviour and di}er quan!
titatively by less than 4)[

The calculations in the geometry with the aspect ratios
5 ] 2 ] 0 are performed with an 79×39×79 grid which
leads to the dimensionless grid spacings Dx � 9[964\
Dy � 9[914 and Dz � 9[9264[ This calculations are
repeated with an 79×79×79 grid in order to obtain a
better resolution of the direction of the magnetic _eld[
As in the case described above the solutions obtained for
the di}erent grids agree well[

The discretization of time is performed by explicit
schemes[ There are two schemes available[ The Euler for!
ward scheme is of _rst order and uses two time levels[ It is
useful for stationary calculations[ The AdamsÐBashforth
method is of second order and uses three time levels[ This
method is preferred for time!dependent calculations[ The
calculations presented in this article are always performed
by both schemes[ The numerical results obtained by using
separately each scheme agree well[ Typical dimensionless
time steps vary between Dt � 09−2 and Dt � 09−3[

For each time step the quotient

Q �
=8n¦0−8n =

=8n
max =

"07#

is calculated for all dependent variables in all gridpoints[
The index n¦0 denotes a discrete point of time which
follows the point of time n after a timestep Dt[ If Q ¾ 09−5

is valid for all variables in all gridpoints the solution is
interpreted as converged[

The spatial discretization is performed by several
schemes[ If the absolute values of the mesh Reynolds
number are small the central!di}erence scheme is used[
Otherwise the LECUSSO upwinding is employed[ The
acronym LECUSSO means Locally Exact Consistent
Upwind Scheme of Second Order[ LECUSSO produces
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less numerical di}usion than common second!order
upwind schemes[ This results in more accurate numerical
solutions[ Details of LECUSSO are explained in Gu�nther
ð02Ł[

The calculation of velocity and pressure is performed
by the fractional!step method[ The resulting Poisson
equation is solved with SHAFT2 a fast solver for
Helmholtz equations using Fourier transformations[ The
fractional!step method ensures the discrete mass con!
servation with computer accuracy[ Detailed information
concerning the fractional!step method can be found in
Kim and Moin ð03Ł\ SHAFT2 is documented in Flassak
and Moussiopoulos ð04Ł[

3[ Results

3[0[ Calculations for a horizontal temperature `radient

In this subsection we show results for natural con!
vection in a cube[ The ~ow is driven by a horizontal
temperature gradient[ For a complete de_nition of the
problem compare Fig[ 0[

First we consider a magnetic _eld in x!direction and
adiabatic walls[ For this case electric currents are induced
by the vertical convective ~ow at the hot and the cold
wall according to Ohms law[ The horizontal ~ow along
the top and the bottom wall does not induce electric
currents because here the velocity is parallel to the mag!
netic _eld[ The electric currents induced near the hot and
the cold wall run in opposite direction according to the
opposite direction of the velocity[ The closing pattern of
the electric current is illustrated in Fig[ 1"a#[ Since electric
charge has to be conserved the electric current has to
short circuit somehow[ Thus\ the electric currents close
in planes y � const[ within the ~uid[ The walls cannot be
entered by the electric currents because they are elec!
trically insulating[ An important fact is that\ unlike in

Fig[ 0[ The investigated physical problem with a horizontal
temperature gradient[

Fig[ 1[ Results for a magnetic _eld in x!direction\ Ha � 199\
Pr � 9[943 and Ra � 095] "a# sketch of the closing pattern of the
electric current and the resulting Lorentz forces^ "b# the velocity
in y!direction[

channel ~ows with electricity insulating walls\ the electric
currents do not have to pass Hartmann layers[ This is
due to the symmetry of the ~ow[ As described above\
electric currents of opposite direction are induced in the
core region of the ~ow[ This current can easily close in
the core region without using Hartmann layers[ This
closing pattern of the electric currents lead to strong
Lorentz forces acting against the vertical ~ow in the core
region[ Near the corners of the cavity these Lorentz forces
vanish because here the electric currents are redirected
next to the electrically insulating walls[ This results in the
~ow pattern of Fig[ 1"b# which shows strong velocity jets
for the velocity component in y!direction near the corner
regions[ The damping of the natural convection is very
strong for this orientation of the magnetic _eld[ In fact\
we will show that this direction of magnetic _eld is most
e.cient in in~uencing the heat transport[ In Table 0
we see that the average Nusselt number at the hot wall
decreases strongly with increasing Hartmann number[
The calculated Nusselt numbers show a reasonable agree!
ment with values obtained by Ozoe and Okada in ð8Ł and
ð09Ł[

Assuming a magnetic _eld in y!direction and adiabatic
walls one _nds a similar behaviour[ In this case electric
currents are induced from the horizontal ~ow near the
top and the bottom wall[ These electric currents close in
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Table 0
Average Nusselt numbers for adiabatic and perfectly heat con!
ducting walls[ The magnetic _eld is oriented in x!\ y! or z!
direction

Ozoe:Okada Mo�)ner
Nu for Bx Nu for Bx Nu for By Nu for Bz

Pr � 9[943\ Ra � 095\ adiabatic walls
Ha � 9 4[626 6[1 6[1 6[1
Ha � 099 3[347 3[655 5[991 6[024
Ha � 199 1[806 1[878 3[442 6[949
Ha � 299 1[140 1[134 2[364 5[812

Pr � 9[943\ Ra � 095\ perfectly conducting walls
Ha � 199 * 0[535 1[113 5[434

planes x � const[ in the core region of the ~ow and pro!
duce Lorentz forces acting against the horizontal ~ow[ As
in the case of a magnetic _eld in x!direction the Hartmann
layers become unimportant[ According to the same mech!
anism described in the previous section velocity jets are
established in regions near the corners[ The di}erence to
the previous situation is that these jets are established
for the velocity component in x!direction[ The closing
pattern of the electric current and the resulting Lorentz
forces are displayed in Fig[ 2"a#[ The resulting ~ow pat!

Fig[ 2[ Results for a magnetic _eld in y!direction\ Ha � 199\
Pr � 9[943 and Ra � 095] "a# sketch of the closing pattern of the
electric current and the resulting Lorentz forces^ "b# the velocity
in x!direction[

tern is presented in Fig[ 2"b#[ The electromagnetic damp!
ing of the ~ow is still strong but weaker compared to the
arrangement of a magnetic _eld in x!direction[ This can
be seen in Table 0[

Considering a magnetic _eld in z!direction and adia!
batic walls the physical situation changes[ In a range
roughly de_ned by 9[1 ³ x ³ 9[7 electric currents in
negative y!direction are induced by the horizontal ~ow
near the top wall[ On the other hand electric currents in
positive y!direction are induced near the bottom wall[
These currents can only short circuit in planes x � const[
Because the electric currents induced near the bottom
wall are in opposite direction compared to the electric
currents induced near the top wall the electric currents
have to ~ow in z!direction at a certain point[ To establish
a short circuit the electric currents have to return in y!
direction[ This is impossible in the core region because
here we have the induced currents coming from the top
or bottom wall[ The only way to establish a short circuit
is to use the Hartmann layers at the walls z � −9[4 and
z � 9[4[ This results in an eight!cell!structure which is
shown in Fig[ 3"a#[ It has been observed for di}erent

Fig[ 3[ Results for a magnetic _eld in z!direction\ Ha � 199\
Pr � 9[943 and Ra � 095] "a# sketch of the closing pattern of the
electric current in a plane x � const[ in the region 9[1 ³ x ³ 9[7^
"b# streamlines in a plane z � const[
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parameter constellations that occasionally a four!cell!
structure occurs as possible closing pattern for the electric
current[ Obviously\ we are facing some kind of bifur!
cation problem[ The eight!cell!structure as closing pat!
tern for the electric current has a surprising in~uence on
the ~ow behaviour[ In the inner region of the cube a
vortex is generated which rotates in opposite direction
compared to the basic vortex which originates from natu!
ral convection[ This behaviour is illustrated in Fig[ 3"b#[
The electromagnetic damping of the ~ow is weak because
the currents are weak[ This in turn is the case because the
electric currents have to pass through the high resistivity
Hartmann layers[ In fact\ the average Nusselt number is
nearly constant with growing Hartmann numbers in the
range 9 ¾ Ha ¾ 299[ This is shown in Table 0[

Considering Table 0 it is obvious that the Nusselt num!
ber for natural convection which is not in~uenced by a
magnetic _eld does not agree with the Nusselt number
obtained by Ozoe and Okada for the same case[ Further!
more\ Ozoe and Okada observe a steady state solution
while our calculations show a weakly time depended solu!
tion[ A reason for this could be that in our calculations
explicit schemes are used which are underdi}usive[ This
means that the numerical algorithm damps oscillations
not strong enough[ On the other hand\ Ozoe and Okada
use a semi!implicit scheme which is known to produce
numerical di}usion and therefore\ introducs too much
arti_cial damping[ Moreover\ we use the LECUSSO
upwind scheme which produces much less numerical
di}usion than the upwind scheme of _rst order used by
Ozoe and Okada[ Because of the high accuracy of the
LECUSSO scheme we believe that our numerical results
describe the physical phenomena at least semi!
quantitatively correct[ We have no doubt that the Nusselt
numbers obtained in the parameter range
099 ¾ Ha ¾ 299 are quite accurate[ For the case Ha � 9\
we assume that the Nusselt number resulting from our
calculation is slightly too large[ The Nusselt number
obtained by Ozoe and Okada is assumed to be too small\
because in the case of a magnetic _eld in y!direction we
_nd for a Hartmann number of Ha � 099 a cor!
responding Nusselt number of Nu � 5[991 which is even
larger than the Nusselt number obtained by Ozoe and
Okada without magnetic _eld[ Therefore\ we believe that
our calculations are numerically more accurate than the
results of Ozoe and Okada[

Although electrically insulating walls normally
coincide with adiabatic walls we maintain the electric
boundary condition but change the thermal boundary
condition from adiabatic to perfectly heat conducting[ In
this case the fundamental electrodynamic mechanisms
described in the previous sections are still observed[ The
qualitative behaviour of the electric currents and the
velocity pro_les are unchanged[ On the other hand the
velocity and therefore the electric current change quan!
titatively[ In addition to this the temperature pro_les are

changed and as a result the heat transport[ Using per!
fectly heat conducting walls the heat transport is reduced
and the average Nusselt number at the hot wall decreases[
Considering magnetic _elds in x! or y!direction the Nus!
selt numbers decrease to about half of their values for
adiabatic walls[ Considering a magnetic _eld in z!direc!
tion one _nds a weak decrease of the Nusselt number[
The characteristic behaviour of the Nusselt number can
be seen in Table 0[

Next\ we consider the case of adiabatic walls and
assume that\ both\ a component of the magnetic _eld in x!
direction and a component in y!direction exist[ Naturally\
the behaviour of the electric current is changed[ The
vertical and the horizontal ~ow induce electric currents[
The vertical ~ow induces currents at the hot and the cold
wall and the horizontal ~ow induces currents at the top
and bottom wall[ The electric currents induced near the
hot wall have opposite direction compared to those
induced near the top wall[ Furthermore\ the electric cur!
rents induced near the cold wall run in opposite direction
compared to those induced near the bottom wall[ This
leads to a diagonal closing structure of the electric
currents[ As in the case where the magnetic _eld is
oriented in x! or y!direction only\ the electric currents
close in the core region of the ~uid[ Hartmann layers
are not important[ For reasons already outlined before
velocity jets are established in regions near the corners\
but here\ both\ the velocity component in x!direction and
in y!direction show this jet like behaviour because there
exist strong Lorentz forces acting in x! and y!direction[
The diagonal closing structure of the electric currents and
the resulting Lorentz forces are illustrated in Fig[ 4[

Finally\ maintaining the parameter set of the previous
paragraph we add a component of the magnetic _eld in
z!direction[ If the magnetic _eld vector is oriented in
direction of one space diagonal of the cube all com!
ponents of the magnetic _eld have the same size[ For
this case the diagonal structure of the electric current

Fig[ 4[ The closing pattern of the electric current and the resulting
Lorentz forces in the case Bx � 9[696\ By � 9[696\ Bz � 9[
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described in the previous paragraph can be found once
more\ however\ this structure is changed near the corners[
The vertical ~ow induces together with the z!component
of the magnetic _eld currents in x!direction[ Additionally
the horizontal ~ow induces currents in y!direction[ These
currents close along paths near the corners[ This behav!
iour of the electric current leads to a new structure of the
velocity pro_le[ Because of the currents induced by the
z!component of the magnetic _eld the electromagnetic
damping of the vertical vanishes at one side[ This results
in a velocity pro_le with a jet like behaviour at this
particular side[ The closing pattern for the electric current
and the resulting Lorentz forces are illustrated in Fig[
5"a#[ The velocity component in y!direction is shown in
Fig[ 5"b#[

If the magnetic _eld is oriented arbitrarily the behav!
iour of the electric current and the velocity cannot be
predicted exactly[ Symmetric ~ows will not occur[
However\ experience shows that it is possible to correlate
the features of the ~ow to those investigated before[ If
one or two components of the magnetic _eld dominate
over the other components the ~ow behaves nearly like
a ~ow under the in~uence of a magnetic _eld where these
minor components vanish but non!symmetric e}ects can
be identi_ed[

Fig[ 5[ Results for a magnetic _eld with the components
Bx � By � Bz � 9[466\ for Ha � 199\ Pr � 9[943 and Ra � 095]
"a# the closing pattern of the electric current and the resulting
Lorentz forces] "b# the velocity in y!direction[

3[1[ Calculations for a vertical temperature `radient

Natural convection driven by vertical temperature
gradients is still a challenge for numerical computations[
When starting for initial conditions the time to develop
stationary ~ows can be quite large[ At high supercritical
Rayleigh numbers the ~ows may even have time periodic
and:or chaotic behaviour[ Moreover\ the damping e}ect
of the magnetic _eld can lead to delayed restructuring
processes in the ~ow[ For numerical computations this
leads to extremely large numbers of time steps[

In order to keep the number of gridpoints and thereby
the computational time in acceptable limits the com!
putations are limited to rectangular cavities with mod!
erate ratio between longest and shortest side length[ Com!
putations are facilitated if the magnetic _eld vector is
parallel to the shortest side wall of the cavity[ In this case
it is possible to resolve the thin Hartmann boundary
layers[ The Hartmann layers which occur at walls per!
pendicular to the magnetic _eld vector are known to scale
with 0:Ha[ Therefore\ it is obvious that we need a huge
number of gridpoints if the magnetic _eld vector is
oriented parallel to a long side of the cavity using an
equidistant grid[

In this subsection we investigate natural convection in
a liquid metal with the Prandtl number Pr � 9[94 con!
_ned in an electrically insulating cavity as shown in Fig[
6[ The cavity side lengths ratio is 5 ] 2 ] 0[ The magnetic
_eld vector is parallel to the vector of gravity[ The bottom
of the container is heated while the top is cooled[ The
side walls are assumed to be adiabatic[

Before discussing natural convection under the in~u!
ence of a magnetic _eld it is useful to describe the fun!
damental features of the ~ow without magnetic _eld[ The
critical Rayleigh number can be estimated with the help
of calculations performed by Kirchartz ð05Ł[ We obtain
Racrit ¼ 0849[ For a Rayleigh number slightly above Racrit

we have a stationary ~ow pattern consisting of six con!
vection rolls[ For convective ~ows in low Prandtl number
liquids this six roll solution becomes unstable if the Ray!
leigh number is slightly increased[ We _rst observe a
pulsation of the rolls settling in the long term to trans!

Fig[ 6[ The investigated physical problem with a vertical tem!
perature gradient[
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versally oscillating ~ow pattern[ A detailed description
of this ~ow can be found in Mo�)ner ð00Ł[ Increasing
the Rayleigh number to values Ra − 093 the number of
convection rolls decreases to four and the ~ow is irregu!
larly time!dependent[

The most obvious feature of the magnetoconvective
~ows is that the number of the rolls depends\ in addition
to the Rayleigh\ also on the Hartmann number[ An
increase in the Hartmann number leads to an increase of
the number of the rolls[ The lateral extension of the rolls
in the x!direction decreases with increasing Hartmann
number[ This behaviour is outlined in Table 1[ For exam!
ple\ without a magnetic _eld and for Ra � 4 = 093 we
_nd four rolls[ Calculations for a Hartmann number of
Ha � 29 result in a six roll pattern[ Increasing the Hart!
mann number to Ha � 49 leads to ten rolls[ The Hart!
mann number Ha � 59 generates even twelve rolls[ The
same phenomenon can be observed for the Rayleigh
numbers Ra � 0[4 = 093 and Ra � 2 = 093[ This behaviour
of the ~ow is not surprising as it has been predicted by
Chandrasekhar ð5Ł and Gershuni and Zhukhovitskii ð6Ł

Table 1
The average Nusselt number Nu and the corresponding ~ow
pattern

Magnetoconvection in a 5 ] 2 ] 0 cavity
Vertical temperature gradient\ Pr � 9[94\ B>g

Nu Flow pattern

Ra � 0[4 = 093

Ha � 9 0[87 3 rolls\ time!dependent
Ha � 19 0[21 5 rolls\ stationary
Ha � 14 0[12 5 rolls\ stationary
Ha � 17 0[01 7 rolls\ stationary

Quadratic extrapolation of our results] Ha − 29cNu � 0
Theory for the in_nite horizontal ~uid layer] Ha − 21cNu � 0

Ra � 2 = 093

Ha � 9 1[38 3 rolls\ time!dependent
Ha � 19 1[08 5 rolls\ stationary
Ha � 29 0[46 5 rolls\ stationary
Ha � 24 0[20 7 rolls\ stationary

Quadratic extrapolation of our results] Ha − 31cNu � 0
Theory for the in_nite horizontal ~uid layer] Ha − 34cNu � 0

Ra � 4 = 093

Ha � 9 1[81 3 rolls\ time!dependent
Ha � 29 1[14 5 rolls\ stationary
Ha � 49 0[22 09 rolls\ stationary
Ha � 59 0[05 01 rolls\ stationary
Ha � 59 0[05 01 rolls\ stationary

Quadratic extrapolation of our results] Ha − 54cNu � 0
Theory for the in_nite horizontal ~uid layer] Ha − 54cNu � 0

for the in_nite horizontal ~uid layer subjected to a ver!
tical magnetic _eld[ According to their theory the width
of a convective roll varies as Ha−0:2[ Furthermore\ our
calculations show that the number of rolls decrease when
the Rayleigh number increases[ This e}ect has frequently
been observed without external magnetic _eld among
others by Koschmieder ð06Ł and by Stork and Mu�ller ð07Ł
experimentally and by Kirchartz ð05Ł numerically[ At a
_xed Rayleigh number Ra � 0[4 = 093 eight rolls occur
when a Hartmann number of Ha � 17 is used[ But when
we increase the Rayleigh number to Ra � 2 = 093 we only
_nd six convection rolls at a Hartmann number of
Ha � 29[ This observation suggests that there is a kind
of competition between the buoyancy e}ects represented
by the Rayleigh number and the electromagnetic e}ects
accounted for by the Hartmann number[

Indeed\ the damping e}ect of the external magnetic
_eld on a natural convection is signi_cant[ In Table 1 we
can see\ that the Nusselt number decreases strongly with
increasing Hartmann numbers[ As the Nusselt number
describes the intensity of the convective heat transport
this observation indicates clearly the signi_cant inhibition
of the convective heat transfer by the vertical magnetic
_eld[ At a Rayleigh number of Ra � 0[4 = 093 the Nusselt
number is about 32) smaller for the case Ha � 17 com!
pared to the Ha � 9[ For a Rayleigh number of
Ra � 2 = 093 a Hartmann number of Ha � 29 reduces the
Nusselt number by about 26) compared to the case
Ha � 9[ And even for a Rayleigh number of Ra � 4 = 093

the Nusselt number in the case Ha � 29 is about 12)
smaller than the Nusselt number obtained for Ha � 9[

Comparing the critical parameters "Rac\ Hac# for which
natural convection is entirely suppressed with equivalent
parameter values for an in_nite horizontal ~uid layer
we _nd good agreement[ The average Nusselt number
satis_es the condition Nu � 0 if the natural convection is
totally damped[ At a Rayleigh number of Ra � 0[4 = 093

the Nusselt number is Nu � 0[01 for Ha � 17 as we can
see in Table 1[ The critical Hartmann number Ha for
which the Nusselt number takes the value Nu � 0 can be
estimated by a quadratic extrapolation of our results
obtained for Hartmann numbers Ha � 19\ 14\ 17 to
Ha � 29[ The theory for the in_nite horizontal ~uid layer
presented by Chandrasekhar ð5Ł predicts a value of
Ha � 21 in this case[ This demonstrates a reasonable
agreement\ taking into account that the side walls of the
cavity introduce an additional viscous damping e}ect on
the convection[ For Rayleigh numbers Ra � 2 = 093 and
Ra � 4 = 093 we obtain corresponding results[

It is striking that we only _nd stationary solutions for
the considered parameter range[ Higher order insta!
bilities and time!dependent ~ows reported by Clever and
Busse ð08Ł for the equivalent problem of an in_nite hori!
zontal ~uid layer cannot be observed[ We conjecture that
the Hartmann numbers considered in our computations
are large enough to suppress time!dependent solutions[
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A stability diagram of Clever and Busse ð08Ł\ presented
in Fig[ 7\ supports this conjecture[ In this diagram the
region of stable stationary solutions and the regions of
several instabilities are shown in dependence of the Ray!
leigh number and the wave number a[ The wave number
a is de_ned as a � 1ph:lc\ where h represents the height
of the container while lc denotes the wave length of the
convection rolls[ Inserting one of our results obtained
for the parameters Ha � 19 and Ra � 0[4 = 093 into this
diagram\ we _nd that our result is located in a region
where stationary two!dimensional roll patterns are
stable[ However\ this comparison has to be taken with
some caution since there are some slight di}erences in
the parameters[ The diagram of Busse and Clever shows
results for Ha � 11 and Pr � 9[90 while our calculation
is performed for Ha � 19 and Pr � 9[94[ Moreover\ we
consider a container of _nite length compared to an in_!
nite horizontal ~uid layer investigated by Clever and
Busse[ It is impossible to compare further results of our
computations with the stability diagram of Clever and
Busse because our values for the Hartmann number or
the Rayleigh number di}er too much compared to those
of the diagram[

Velocity pro_les of the numerical solutions are shown
in Figs 8 and 09[ We see that the pro_les are characterized
by jet!like velocity distributions in regions to the corners
formed by the horizontal boundaries and the side walls
perpendicular to the roll axes[ Here\ we _nd strong vel!
ocity gradients whereas the velocity is nearly constant
along the vortex axes in the core region[ This jet character
near the corners can be found for the horizontal and
the vertical velocity component as one can see in Figs 8
and 09[

The velocity distribution is easily explained by ana!
lysing the paths of the electric currents and the resulting
Lorentz forces[ The only conceivable and consistent clos!
ure pattern for the electric currents is sketched in Fig[ 00
together with the related double roll ~ow pattern[ In
principle any ~uid motion in x!direction induces electric

Fig[ 7[ Integration of one of our results in a stability diagram of
Clever and Busse ð08Ł[

Fig[ 8[ The horizontal velocity component and the projected
streamline pattern in a plane z � const[ for Ra � 2 = 093\ Ha � 29
and Pr � 9[94[

Fig[ 09[ The vertical velocity component for Ra � 2 =093\
Ha � 29 and Pr � 9[94[ The geometry is presented distortly to
show the jet like behaviour more clearly[

Fig[ 00[ Sketch of the closing pattern of the electric current and
the corresponding ~ow pattern of neighbouring roll cells[
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currents in z!direction according to the vertical B!_eld
and Ohms law[ Vertical motion\ however\ does not a}ect
the current distribution[ The currents have to short circuit
within the conducting ~uid\ since the con_ning walls were
assumed to be electrically insulating[ In each convection
roll currents which are induced near the bottom plate run
in the opposite direction to those induced near the top
plate[ Moreover\ in two adjacent parallel rolls the electric
currents which are induced near the bottom or top
boundary are opposite to each other as the horizontal
components of velocity have opposite direction[ Because
of the charge conservation requirement the electric cur!
rents have to short circuit[

Moreover\ as indicated in Fig[ 00\ the induced electric
currents give rise to Lorentz forces which counteract the
buoyancy induced horizontal ~ow in each roll in the
core region[ Thereby\ a signi_cant braking e}ect on the
convection rolls is generated[ This braking e}ect is absent
near the side walls perpendicular to the roll axes[ Here\
Lorentz forces vanish because electric currents run par!
allel to the magnetic _eld or Lorentz forces are parallel
to the roll axes[ In the second case the Lorentz forces
point in opposite direction near the bottom or top plate
and the direction of the forces is reversed in a neigh!
bouring convection roll[ The missing or at least reduced
braking e}ect results in a jet like velocity distribution in
each roll near the side walls[ This explains the obser!
vations presented in Figs 8 and 09[

4[ Summary and conclusions

This paper presents numerical solutions for natural
convection of a liquid metal con_ned in electrically insu!
lating rectangular cavities[ The ~ow is subjected to an
external stationary magnetic _eld[ For a horizontal tem!
perature gradient a magnetic _eld perpendicular to the
heated wall is most e}ective in damping the natural con!
vection[ A horizontal magnetic _eld parallel to the heated
side wall results in the least damping[ In the case of
vertical temperature gradient the number of convection
rolls depends on the Rayleigh and the Hartmann number[
Increasing Rayleigh numbers decrease and increasing
Hartmann numbers increase the number of convection
rolls in the cavity[ The resulting Lorentz forces and their
braking e}ect explain the seemingly strange shape of the
velocity pro_les with excessive intensities in regions near
the corners[

Thus\ as in common MHD!~ows\ the paths of the
induced electric currents and the resulting Lorentz forces
govern the particular phenomena of magnetoconvection[
Often electric currents short circuit in the core region of
the ~ow without passing Hartmann layers\ therefore the
resulting damping of the ~ow is quite strong[ This is a
major di}erence to MHD channel ~ows where electrically
insulating walls lead to a weak damping of the ~ow[ This

result is in good agreement with the _ndings of Davoust
et al[ ð1Ł[
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